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1. Introduction

It is well known that point particles in pure 2+1 dimensional gravity — or relativistic

codimension two objects in higher dimensional theories — generate a conical space with

deficit angle α = m, where m is the mass of the particle (we set 8πGN = 1) [1]. If the

metric is static, the two dimensional space transverse to the defects has zero curvature

away from the singularities and is non-compact when the total mass of the defects is less

than 2π, or compact and of spherical topology when the total mass is exactly 4π.

In [2] it was shown that these constraints can be relaxed by allowing the metric to

be time dependent. The space remains flat outside the defects, but is naturally foliated

by two dimensional locally hyperbolic slices. The constant negative curvature of this two

dimensional space accommodates defects with any total mass, and allows it to have any

topology (subject to some mild restrictions). Physically these solutions describe 2+1 di-

mensional cosmologies uniformly expanding from (or contracting towards) a big bang at

t = 0.

In this note we will make use of this fact to find expanding solutions for codimension

two σ-model solitons with tension and topology not allowed by a static ansatz. This is

possible because the σ-model solitons (unlike abelian Higgs model vortices, for example)

have a scale invariance which, like distributions of pressureless point masses, allows them

to expand uniformly (see also [3]).

Our interest in these types of configurations arises from applications in string theory

where σ-models are ubiquitous. In particular we will show that this construction allows us

to generalize the stringy cosmic strings of [4] to arbitrary numbers of defects and general
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transverse topology. This in turn can be exploited to find F-theory [5] backgrounds of type

IIB string theory with a number of 7-branes larger than 24.

Our solutions are reminiscent of those of refs. [6 – 9] (see [10] for a review and additional

references), which considered time dependent solutions obtained by orbifolding flat space

foliated with negatively curved slices. In our case the presence of sources means that

the transverse metric does not in general have constant negative curvature, but in certain

limits the sources are point-like and our solutions are locally flat. It would be interesting

to investigate the connection with these works.

2. Construction

Our results follow in part from [2], which constructed new gravitational solutions corre-

sponding to an arbitrary number of point-like codimension two objects coupled to gravity.

To see how this works, recall that a codimension two defect which is boost invariant along

its world volume directions — such as a straight relativistic cosmic string — generates

a locally flat metric with a conical singularity at the location of the defect. Choosing a

metric ansatz

ds2 = −dt2 + dxidxi + eφ(z,z̄)dzdz̄ (2.1)

appropriate for a distribution of parallel defects, the vacuum Einstein’s equations reduce

to the Poisson’s equation for φ, with δ-function sources:

∂z∂z̄ φ =

N
∑

i=1

mi δ
2(z − zi). (2.2)

Since the curvature R2 of the two dimensional space Σ parametrized by (z, z̄) is related to

φ by
√

γR2(γ) = −2i∂z∂z̄φ, eq. (2.2) implies R2 = 0 away from the defects. We can apply

the Gauss-Bonnet theorem to Σ:
∫

Σ
R2 + 2

∫

∂Σ
K1 = 4πχ, (2.3)

where K1 is the extrinsic curvature of the boundary and χ is the Euler character. Using

eqs. (2.2) and (2.3) one finds

2

∫

∂Σ
K1 = 4πχ − 2

N
∑

i=1

mi. (2.4)

Since a surface of genus g has χ = 2−2g, if the space is compact and without boundary the

only solution has spherical topology and
∑

mi = 4π. Non-compact asymptotically conical

solutions exist when
∑

mi ≤ 2π.

In [2] it was shown that these restrictions on the deficit angles can be avoided if the

two dimensional metric is uniformly expanding:

ds2 = −dt2 + dxidxi + t2eφ(z,z̄)dzdz̄. (2.5)
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The vacuum Einstein’s equations become a Liouville equation for the conformal factor:

∂z∂z̄ φ =
1

2
eφ −

N
∑

i=1

mi δ
2(z − zi). (2.6)

This differs from the Poisson equation (2.2) by the term 1
2eφ, which arises due to the t2

dependence. In the absence of sources the solution of this equation, φ = 2 ln
(

2i
z−z̄

)

, is a

metric for the hyperbolic plane H2 with constant negative curvature. The full metric is

flat space written in a two dimensional hyperbolic slicing. In the presence of defects the

space away from the singularities is still locally flat, but the global solution is non-trivial.

The constraint on the total mass is modified because the curvature term on the left-

hand side of (2.3) now makes a negative definite contribution. Integrating the Liouville

equation (2.6) and using (2.3) one finds that the volume of Σ is given by

V =
N

∑

i=1

mi + 4π(g − 1) (2.7)

(from here on we will drop the boundary term for simplicity). Positivity of the volume

implies that there are compact solutions with spherical topology only if
∑

mi > 4π, and

(at least for closed and compact spaces) in general V > 0 is the only constraint on the

existence of solutions for all topologies (see theorem A of [12]).

2.1 Sigma model solitons

Consider the following action

S = −
∫ √

−g ddx

(

1

2
R + Kτiτ̄j

∂µτi∂
µτ̄j

)

(2.8)

describing a complex non-linear σ-model coupled to gravity. Here the fields τi are com-

plex scalars which could arise as moduli of a compactification from higher dimension, and

Kτi τ̄j
≡ ∂τi

∂τ̄j
K determines the metric of the target space complex manifold. In d = 4 this

is the bosonic part of a supersymmetric action.

Under some topological conditions actions of the form (2.8) admit soliton solutions

describing codimension two objects [11]. To see this one can choose the metric ansatz (2.5),

and assume the scalars depend only on the transverse coordinates: τi = τi(z, z̄). The two

dimensional conformal factor t2φ(z, z̄) is time dependent, but nonetheless it cancels in the

equations of motion for the scalars:

Kτi τ̄kτl
(∂zτi∂z̄τl + ∂z̄τi∂zτl) + 2Kτi τ̄k

∂z∂z̄τi = 0. (2.9)

These equations are trivially solved by any holomorphic (or anti-holomorphic) functions

τi(z), but one should make sure that the solution is well defined on the entire manifold

spanned by the scalars. The solutions so obtained correspond to a holomorphic mapping

of the spacetime surface Σ into the target space manifold. The energy can be expressed in

a Bogomol’nyi-like form as the integral of the Kähler (1,1) form:

E = − i

2

∫

d2z ∂z∂z̄K(τi(z), τ̄j(z̄)) = −1

2

∫

d2τ1 . . . d2τn

√

det(Kτi τ̄j
). (2.10)
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The right-hand side is essentially the volume of the target space times an integer N counting

the degree of the mappings τi(z). The energy E is positive if the Kähler metric is positive

definite (as required by supersymmetry), and with our normalization corresponds to the

total deficit angle.

Having solved the scalar equations of motion, we need to show that Einstein’s equations

can be solved consistently. With the time dependent ansatz (2.5) they reduce to a single

equation:

∂z∂z̄φ =
1

2
eφ − ∂z∂z̄K(τi(z), τ̄j(z̄)), (2.11)

which is similar to (2.6) with the δ-function sources replaced by the smooth energy density

∂z∂z̄K.

As in the case of point particles, some mild restrictions on the solutions of eq. (2.11)

arise depending on the total energy of the source. Integrating the Liouville equation and

using the definition of E we obtain

V = E + 4π(g − 1) (2.12)

(cf. eq. (2.7)). In the static ansatz (2.1) the left-hand side of eq. (2.12) would be zero, and

the only allowed compact manifold would be spherical with energy E = 4π. The expanding

ansatz allows much more general solutions. For spherical topology the total energy should

again be greater than 4π, and for higher genus surfaces there is evidently no constraint

from Gauss-Bonnet (at least if E > 0).

Physically we expect solutions of (2.11) to exist so long as the right-hand side of (2.12)

is positive. As we mentioned previously, existence has been proven when the sources are δ-

functions [12]. In the smooth case the results of [13] prove existence for arbitrary topology

of the transverse space Σ, at least when it is closed, compact, χ < 0, and the energy density

∂z∂z̄K > 0. This last is guaranteed if the Kähler metric on the target space is positive.

The situation is more complex when χ ≥ 0.

2.2 CP1

As an explicit example, we can apply the construction outlined above to a σ-model with

CP1 target space [14]. The Kähler potential is

K = a2 log[1 + τ τ̄ ], (2.13)

so that the metric is that of a round sphere. The topological solitons of this model cor-

respond to mappings of the spacetime sphere into the target space sphere. The simplest

example of such a map is simply τ = z. From direct integration of (2.10) we see that the

energy of this configuration is 2πa2. The general N -vortex solution is given in terms of a

rational function,

τ(z) =
P (z)

Q(z)
(2.14)

where P (z) and Q(z) are polynomials of degree p and q without common factors. The

energy (2.10) of these solutions can be easily evaluated by noting that the mapping (2.14)
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covers the target space sphere N=max(p, q) times, so that

E = 2πa2N. (2.15)

An explicit solution of the Liouville equation can be found when N = 1. Since this is

a trivial mapping from sphere to sphere, the natural guess is

eφ = κ
1

(1 + zz̄)2
. (2.16)

By plugging into eq. (2.11) one finds that this is a solution if

κ = 2a2 − 4. (2.17)

From the fact that the metric must be positive it follows that a2 > 2, which is nothing but

the constraint implied by the positivity of the volume in eq. (2.12).

3. F-theory revisited

Arguably the most interesting application of our time dependent solutions is in the context

of string theory. The simplest case is type IIB string theory, where the relevant σ-model is

provided by the axion-dilaton, which spans an SL(2, R)/U(1) manifold. Static codimension

two configurations with varying axion-dilaton are the starting point for F-theory [5].

At the supergravity level the relevant part of the action is

S = −
∫ √−g d10x

(

1

2
R − ∂µτ∂µτ̄

(τ − τ̄)2

)

, (3.1)

which has the form of (2.8) with K = − log[−i(τ − τ̄)]. Topological solitons of this theory

corresponding to mappings of the Riemann sphere into the target space manifold were con-

sidered in [4]. To construct solutions with finite energy one needs to exploit the symmetries

of the theory by allowing τ to undergo non trivial SL(2, Z) monodromies as it varies on

the compactification manifold.1 Since τ can be interpreted as the modular parameter of a

“hidden torus” associated with a 12 dimensional interpretation of the theory, the solutions

so constructed describe an elliptically fibered manifold obtained by erecting a torus at each

point on the base manifold [5].

To construct these configurations more explicitly it is convenient to parametrize the

torus as the complex surface

y2 = x3 + fx + g (3.2)

embedded in C
2. The complex numbers f and g determine the complex structure of the

torus:

j(τ) =
4(24f)3

27g2 + 4f3
, (3.3)

1At the classical level the action (3.1) is SL(2, R) invariant, but quantum effects break this to the discrete

subgroup SL(2, Z). This is manifest in the twelve dimensional picture, where the symmetry is the modular

transformation of the complex structure τ on the torus.
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where j(τ) is the modular function mapping the fundamental domain of SL(2, Z) to the

Riemann sphere. Multi-vortex solutions are obtained by taking f and g to be polynomials

in the coordinate z of the base manifold. The zeros of the polynomial

∆ = 27g(z)2 + 4f(z)3 (3.4)

determine points where the torus degenerates, but where the space is nonetheless regular [4].

Noting that the area of the fundamental domain of SL(2, Z) is π/6 in our conventions, it

follows immediately from eq. (2.10) that the total energy is

E = N
π

6
, (3.5)

where N is the degree of ∆.

In the type IIB context these configurations carry (p, q) 7-brane charge [5, 16]. For the

case relevant to the simplest F-theory compactifications the base of the elliptic fibration is

the Riemann sphere, therefore from eqs. (3.5) and (2.12) it follows that it takes precisely

24 7-branes to close the space. The most general solution of this type is obtained by

taking f(z) and g(z) to be polynomials of degree 8 and 12 respectively. The manifold so

constructed is an elliptic fibration of K3, and the metric on the base manifold can be found

explicitly by solving the Poisson equation sourced by the σ−model [4].

When the number of 7-branes is greater than 24 they cannot be placed on a sphere

without some source of negative curvature. Using the time dependent ansatz (2.5), however,

the problem is of the form we discussed in the previous section. The solution for the scalars

is the same as eq. (3.3), while the metric is now determined by the associated Liouville

equation (2.11).

The Gauss-Bonnet theorem would require at least N=25 defects to find a compact

solution. However in this case there will be branch cut singularities in τ(z) [4, 15]. For

this reason we will focus on the case N = 6n, as in these cases the solution is regular.

As we show below, in a certain limit this reduces to the Liouville equation with point-like

singularities.

The number of parameters necessary to specify our expanding F-theory solutions is

similar to the dimension of the moduli space of static 7-branes. For the case where the

number of singularities is 6n the polynomials f and g have degree 2n and and 3n. This

corresponds to 5n + 2 complex free parameters. Taking into account conformal transfor-

mations and the fact that the solution only depends on the ratio f3/g2 we conclude that

the general solution with 6n singularities depends on 5n − 2 complex parameters. Note

however that, contrary to the F-theory case, the volume of the internal space (at given t)

is now fixed by eq. (2.12).

3.1 Sen’s limit

A general concern about solutions with varying axion-dilaton is that the classical config-

uration might be strongly corrected. This seems a particularly acute worry for our time

dependent configurations because (as we will discuss) supersymmetry is broken. Since the
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imaginary part of τ controls the string coupling, it follows from eq. (3.3) that there are re-

gions of space where the string coupling is large and perturbation theory cannot be applied

even in principle. While the topological origin of the solutions strongly hints that they will

survive in the full theory, it is useful to find a limit where these solutions are fully under

control.

In [17] Sen considered a special limit of F-theory where τ becomes constant and the

solution can be understood as an orientifold of type IIB string theory. We now show that

the same limit can be used in the time dependent case. To obtain a constant axion-dilaton

one must go to a particular limit of the parameter space of our solutions where f, g in (3.3)

are chosen so that f3/g2 = α. The free parameter α controls the string coupling, and can

be chosen so that the coupling is small. The energy E of the solution in the limit is still

determined by the degree of the polynomial 27g2 + 4f3.

In this limit the σ-model solitons collapse to point-like singularities corresponding to

a deficit angle of π each [17]. For the static F-theory solutions there are four stacks of six

(p, q) 7-branes each. The manifold is topologically a sphere whose metric,

ds2
2 = R2

4
∏

m=1

|z − zi|−1/2 (3.6)

is locally flat but with four singularities. Similarly, if the total number of singularities is

N = 6n with n ≥ 5 we can pack them into stacks of six each. The metric is then determined

by the Liouville equation with δ−sources (2.6). Around the singularities the metric is just

a reparametrization of flat space with conical deficit. As a consequence only globally it is

possible to distinguish these solutions from the ones in the usual F-theory. As in [17] by

looking at the transformation of the coordinates (x, y) of the torus (3.2) moving around

the singularities one discovers that there exists a non-trivial SL(2, Z) transformation
(

−1 0

0 −1

)

(3.7)

under which τ is invariant.

In the perturbative string theory framework such a monodromy is associated with the

presence of an orientifold plane so that each singularity is described pertubatively by an

O7-plane and four 4 7-branes [17]. Since our construction allows an arbitrary number of

defects and locally the space is the same as in [17], it is natural to interpret our solutions as

an orientifold of string theory with five or more O7-planes. In particular this might allow

one to give a perturbative world-sheet description of these solutions.2

Another interesting feature of this solutions is that on a surface with constant negative

curvature 2π conical defects (known as parabolic singularities) become possible. Close to

such a singularity the metric is given by

eφ ∼ 1

zz̄ (log zz̄)2
. (3.8)

2We should note that since some of the fields transform under the full SL(2, Z) or its double cover, global

obstructions may in fact require N = 24n. We thank Simeon Hellerman for pointing this out to us.
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The proper distance from the singularity at z = 0 to any finite z diverges, but the volume is

finite. Evidently moving two π singularities together draws that point out into a cusp. The

SL(2, Z) transformation around these points is trivial. It would be interesting to study the

behavior of string theory close to these singularities and see whether tachyon instabilities

appear along the lines in ref. [19].3

3.2 Other topologies

With the static ansatz the only allowed topology is spherical, but as we have seen these

constraints are avoided when the ansatz is time dependent. From eq. (2.12) we see that

there is no topological constraint for g > 1, while the toroidal topology simply needs E > 0.

We can find generalizations of the solutions of [4] to cases where the base of the

fibration is a Riemann surface of genus g by considering mappings between the fundamental

region of SL(2, Z) and the Riemann surface. We can construct such maps by composing

the inverse of the j-function with a map from the Riemann surface into the Riemann

sphere. In particular, if z = h(ζ) is a meromorphic map from a Riemann surface Σ with

coordinate ζ into the complex plane, then τ(ζ) = j−1 (h(ζ)) describes a “stringy cosmic

string” configuration with transverse space Σ.

This can be done rather explicitly for the case of toroidal topology. In this case the

functions f and g in (3.3) must be mereomorphic functions defined on the base torus, i.e.

elliptic functions. These are in general rational functions of the Weierstrass ℘−function

(with periods determined by the torus) and its derivative. The simplest solution is given

by

j(τ(z)) =
4(24℘(z))3

27 + 4℘(z)3
. (3.9)

Since ℘ has one double pole at z = 0 and two single zeros in the fundamental region of

the spacetime torus (not to be confused with the “hidden torus” of the 12 dimensional

description) one can check that τ does not have orbifold singularities and is well defined

on the torus. The mapping (3.9) covers the fundamental region of SL(2,Z) six times (this

follows from the fact that the ℘(z) is a double cover of the Riemann sphere), so evidently

this configuration can be understood as six 7-branes on an expanding torus. We can find

an analog of the Sen limit that should connect these solutions to perturbative string theory.

This could be done for example by taking f = α℘2 and g = ℘3. It would be interesting to

study these configurations more in detail.

We can also find solutions in cases where the transverse space is non-compact. A

simple example follows from the above: given a solution with toroidal topology, we can

always re-interpret the configuration as an infinite expanding array of defects. More general

configurations should also exist, either with a finite or infinite number of defects. In the

case where the total mass is finite, the extrinsic curvature term in eq. (2.4) compensates

for the bulk curvature contribution.

3We would like to thank Allan Adams for discussions on this point.
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4. Corrections

F-theory backgrounds constructed from elliptic fibrations of Calabi-Yau manifolds are su-

persymmetric [5, 20]. In the expanding case the time dependence implies that supersym-

metry is broken. It is interesting to see in detail how this happens. For simplicity we

consider the problem in 4D with four supercharges following [18]. For a supersymmetric

σ−model coupled to gravity the variations of the fermions are

δǫχi = i
√

2σµǭ∂µτi

δǫψµ = ∂µǫ − ǫωµ − 1

4

(

Kτj
∂µτj − Kτ̄j

∂µτ̄i

)

ǫ (4.1)

where ωµ is the spin connection. For holomorphic solutions of the scalars the variation of

the spinors χi is zero for ǫ̂ = γz̄ǫ. The gravitino equation implies an integrability equation,

[Dµ,Dν ] ǫ̂ = 0 (4.2)

where Dµ is defined by the variation of the gravitino above. On can check that this condi-

tion is just the Liouville equation (2.11), so it is automatically satisfied by the background.

However the integrability condition is necessary but not sufficient to guarantee the exis-

tence of Killing spinors. In fact writing explicitly the variations of the gravitino, due to

the time dependence of the ansatz, one finds that eφǫ̂ = 0. This proves that the expanding

solutions are not supersymmetric. However, the energy density dilutes with the expansion

and therefore the supersymmetry is approximately restored at late times.

In Sen’s limit, the background around the singularities is identical to the supersymmet-

ric case, so locally one can find solutions of the Killing spinor equations. There are however

no globally well defined Killing spinors (except possibly in the non-compact case N = 6).

The breaking of supersymmetry here is reminiscent of Scherk-Schwarz compactifications

where supersymmetry is broken non-locally by boundary conditions.

Since the 2π singularities have no flat space analog, we expect them to break super-

symmetry locally and they are likely unstable. Similarly, configurations of N strings where

N 6= 6n are non-supersymmetric even in flat space, and are likely to be locally unstable

(but see [15] for an interesting exception in the non-compact case). Since supersymmetry

is broken at loop level there will be a force between the different stacks of 7-branes. At

late times this effect could just be computed from the Casimir energy in the supergravity

approximation. As we approach t = 0 this will presumably turn in a tachyon instability

similar to the one of the 2π singularities.

Finally our solutions will have both gs and α′ corrections. As we argued above the

first ones become under control everywhere in the space in the Sen’s limit. For the latter

it is sufficient to note that the curvatures scale as,

R ∝ 1/t2 (4.3)

At large t all the correction due to higher powers of the curvatures become negligible. At

least in the Sen’s limit, the space is locally supersymmetric, the string coupling can be

taken arbitrarily small, and the non-supersymmetric states become very massive, so we

expect these solutions to be under good perturbative control.
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5. Discussion

In this note we have presented new σ-model solutions corresponding to supermassive codi-

mension two solitons coupled to gravity. The time dependence of the metric allows us

to construct solutions with an arbitrarily large number of defects and differing transverse

topologies, evading the constraints which apply to static configurations. In particular we

have shown that this construction can be applied to type IIB string theory, generalizing

F-theory backgrounds to an arbitrary number of 7-branes.

We have left many interesting questions unanswered. For example in F-theory, solu-

tions can be viewed as a compactification from 12 dimensions. In particular elliptically

fibered Calabi-Yau manifolds of any dimension can be used [20]. Here we have considered

the simplest case where the base space is two dimensional, and the Liouville equation plays

a key role. It would be interesting to consider generalizations to higher dimensional base

manifolds. Another direction is to study the field theory description of these solutions

using brane probes [17, 21, 22].

On the gravitational side, one could study the stability of these solutions under pertur-

bations, for example where the defects are given some non-zero relative velocities. Perhaps

the most pressing question is what happens as we approach the singularity at t = 0. Here

higher curvature corrections will become important and the supergravity approximation

breaks down. Since supersymmetry is broken instabilities are likely to appear. One pos-

sibility is that tachyon condensation could resolve the singularity. A related conjecture is

that these backgrounds are dual or connected via tachyon condensation to supercritical

string theories [23]. We leave these investigations to future work.
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